

International webinar on Earth Observations for Agricultural Statistics (EO-STAT):

EO Data cubes, smart classification algorithms, impacts of disasters on crops, and a live demo

Use of EO data cube in Mexico to calibrate an algorithm to obtain the Agriculture Frontier

M. Sc. Eduardo Vázquez Andrade

Rwanda

December 18, 2023

Background

Background in the Use of

Earth Observations

In 2009 began the first exercises to use Earth Observations to obtain agricultural statistic information. Some projects were developed between 2012 y 2018.

However, the high cost of images and software limited their use

Data from

Agricultural Census

2007 Agriculture Census. One of the main results was a digital archive of all censused lands, with the primary activity (Agricultural, livestock, or forestry) included as an attribute. Subsequent update projects began with the Update of the Agricultural Census Framework 2016 (AMCA):

- 2016 AMCA, at land level
- 2017 ENA, only simple selected
- 2019 ENA, only simple selected
- 2018-2019 Review of AMCA with satellite imagery
- 2019-2020 Comparison of AMCA with other sources of agricultural frontiers

Agricultural Land Use Identification

Agricultural frontier concept, Territorial distribution of areas in Mexico with agricultural activity, and lands cultivated in the last 5 years.

* According to the concepts of SIAP and INEGI

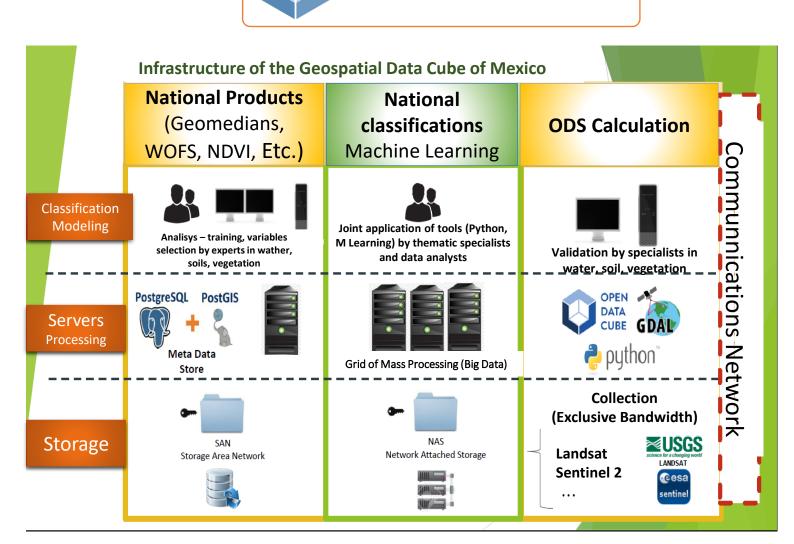
INEGI's Data Cube

In 2019 Geosciences Australia advised a group of experts of INEGI

Implementation of the Data Cube.

- Landsat images
- -Sentinel 2 images
- Integration of Geomedian processes.

Exercises of application.



OPEN DATA CUBE

Problem Statement

Statement

of the Problem

The problem to address is how to produce timely, cost-effective, and reliable estimates of the national agricultural frontier using Earth Observations combined with artificial intelligence algorithms.

Landsat (~38 years) & Sentinel-2 (~7 years)

10m. Spatial resolution

Landsat 4,5,7,8,9

Sentinel 2A, 2B

Objective

Calibrate an algorithm using Artificial Intelligence and SENTINEL 2 satellite imagery to estimate the National Agricultural Frontier.

Methodology

Data

Sources

Agricultural frontier

Sentinel-2 Geomedian (12) Spectral indexes (20)

Texture filters (48)

2019

2019

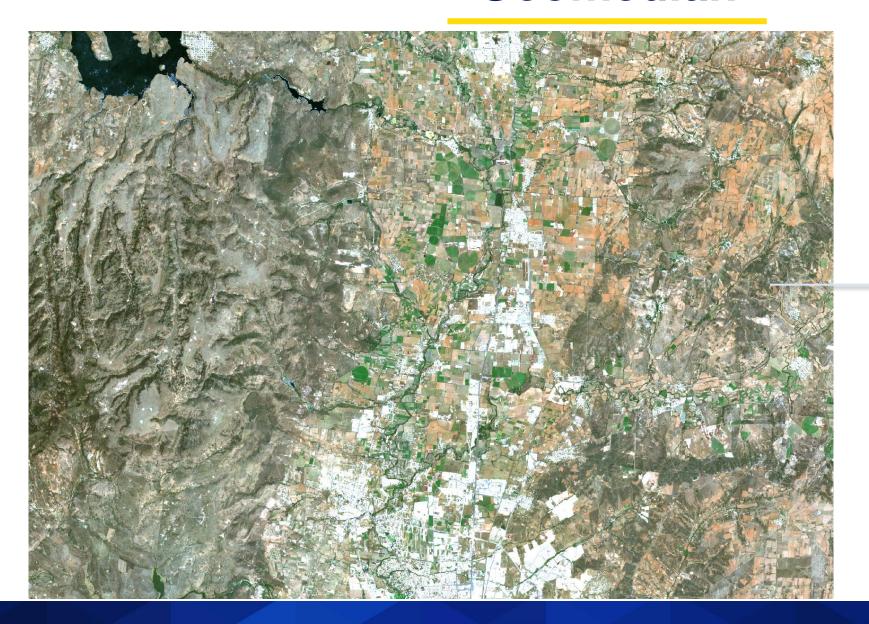
2019

2019

Reference

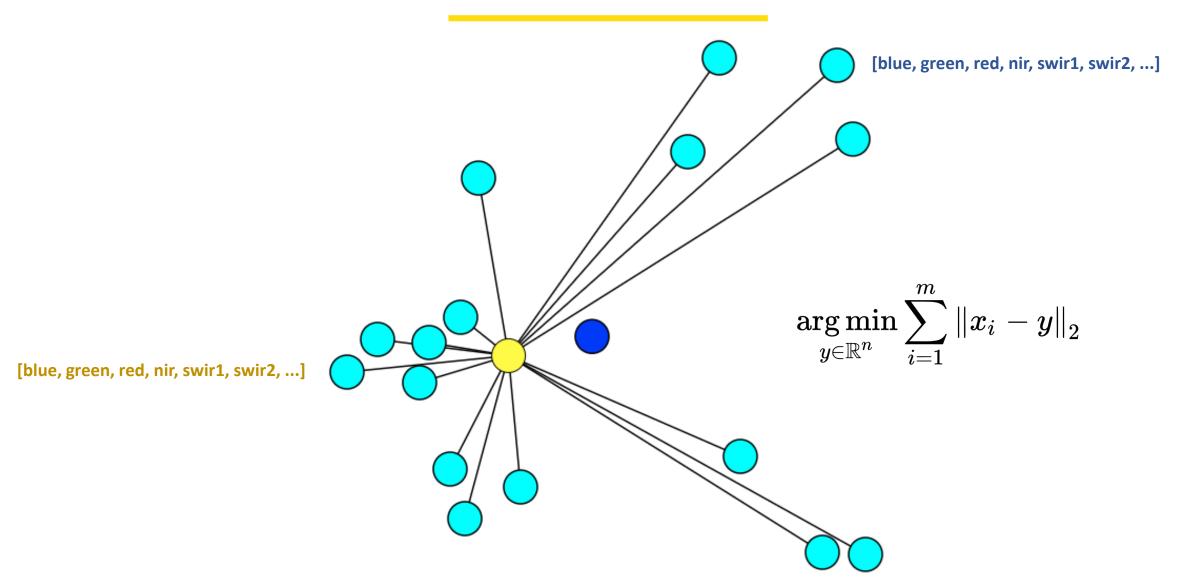
Labels

Geomedian

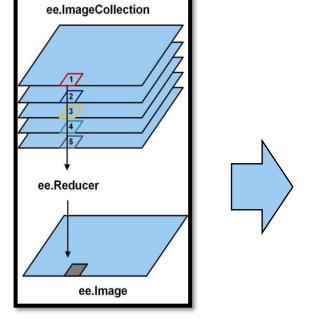


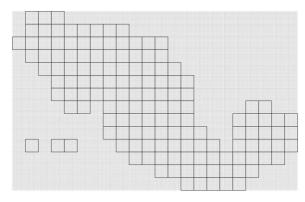
- 1. Coastal Aerosol
- 2. Blue
- 3. Green
- 4. Red
- 5. Vegetation 5
- 6. Vegetation 6
- 7. Vegetation 7
- 8. Near-Infrared
- 9. Vegetation 8
- 10. Water Vapour
- 11. Short Wave Infrared 1
- 12. Short Wave Infrared 2

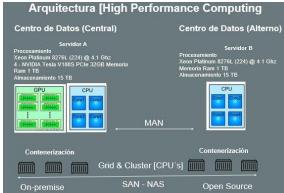
Geomedian = Geometric Median



Geomedian = Geometric Median







ee.Reducer.geometricMedian

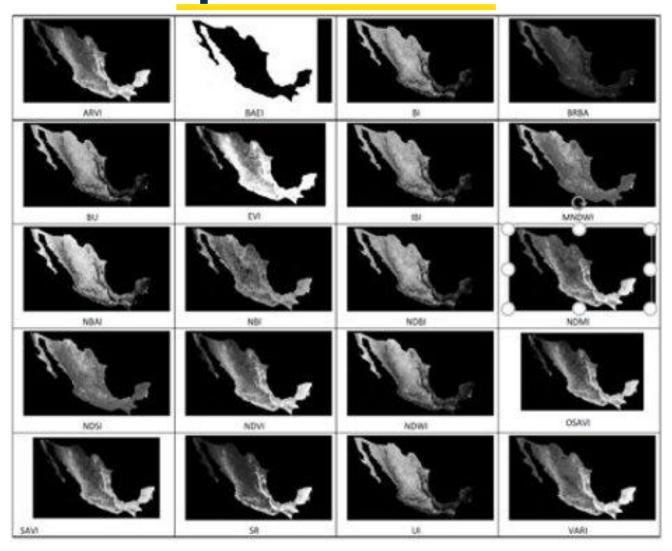
Imange Reprojection & Alignment

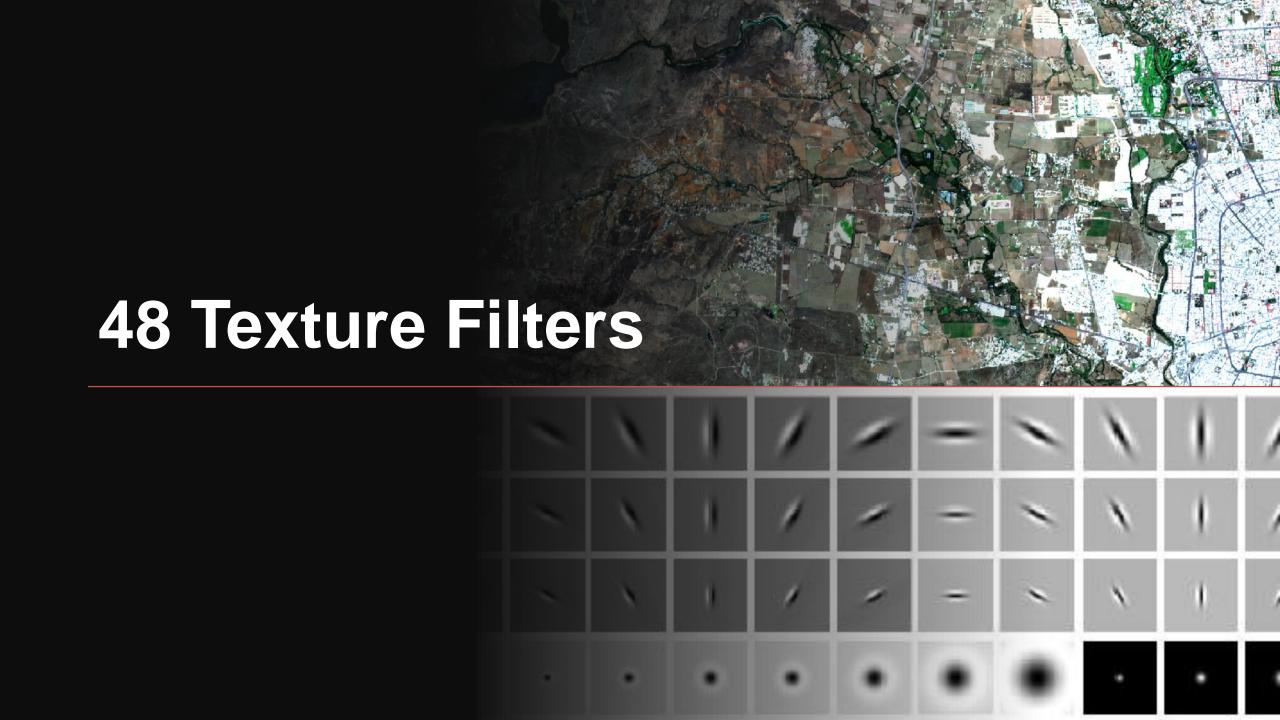
GeoTIFF Images
12 Bands

Sources:

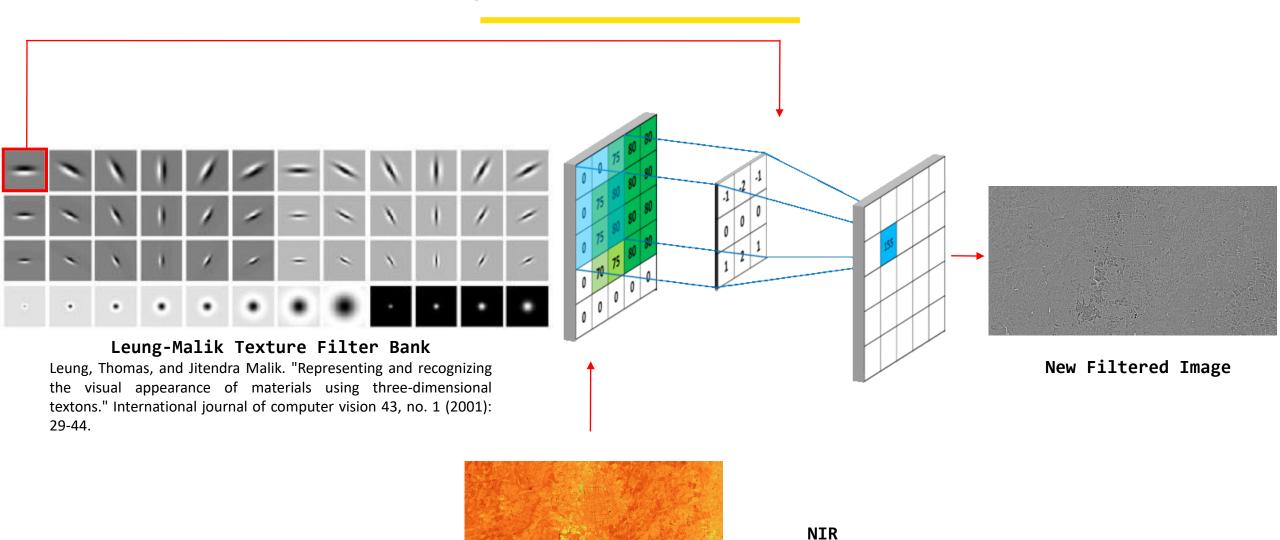
https://developers.google.com/earth-engine/apidocs/ee-reducer-geometricmedian https://www.researchgate.net/figure/The-reducer-operation-provided-by-Google-Earth-Engine-GEE-17_fig3_349430332 https://en.wikipedia.org/wiki/Geometric_median

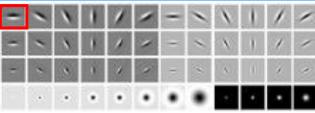
20 Spectral Indexes

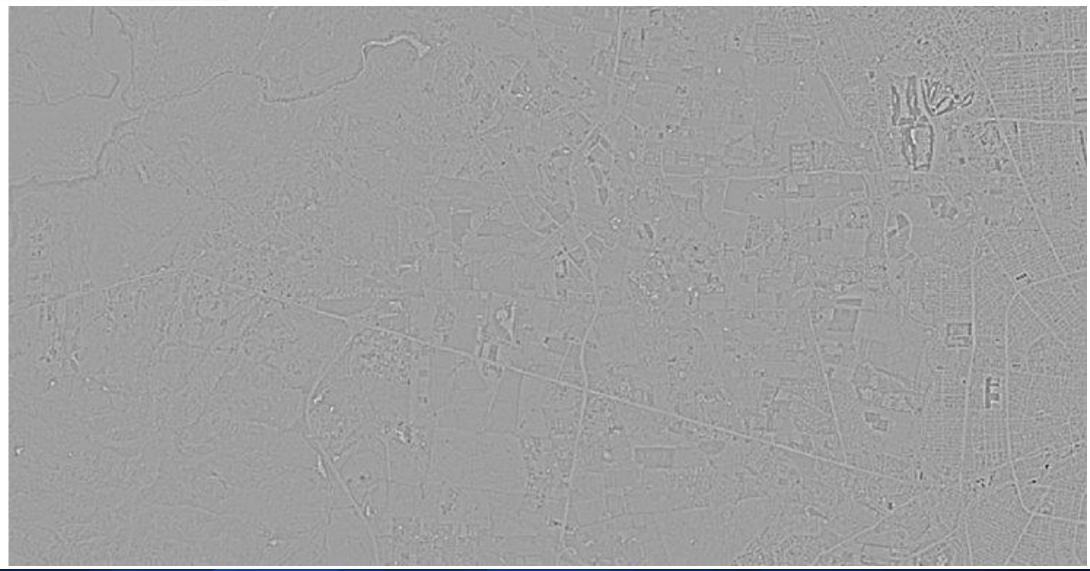


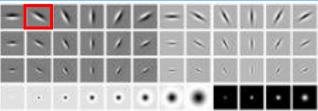


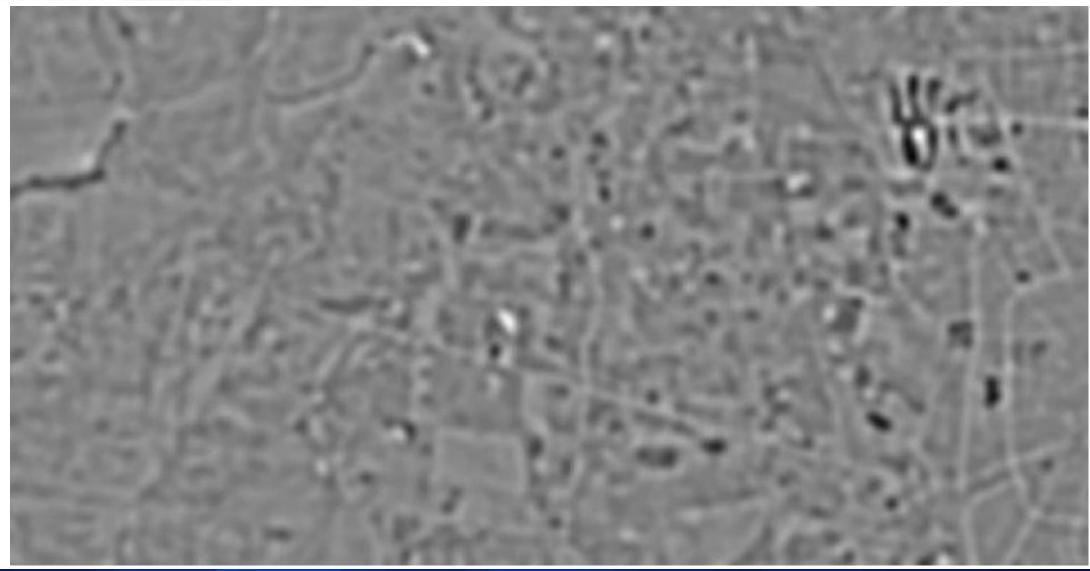
Texture filters on the Infrared Band

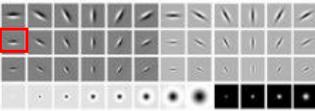


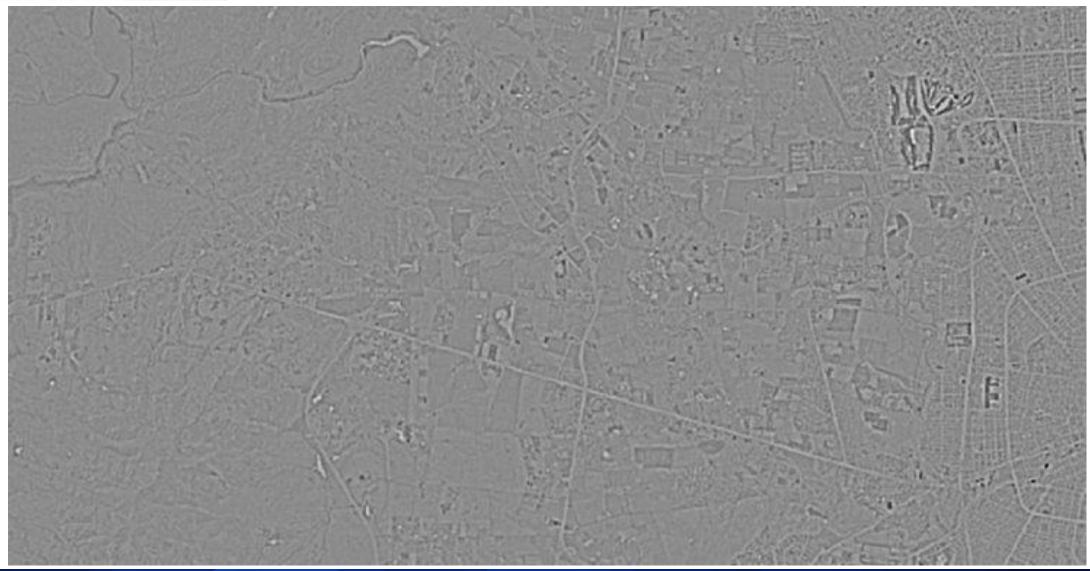


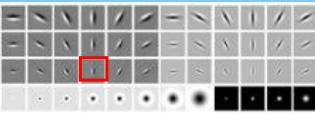


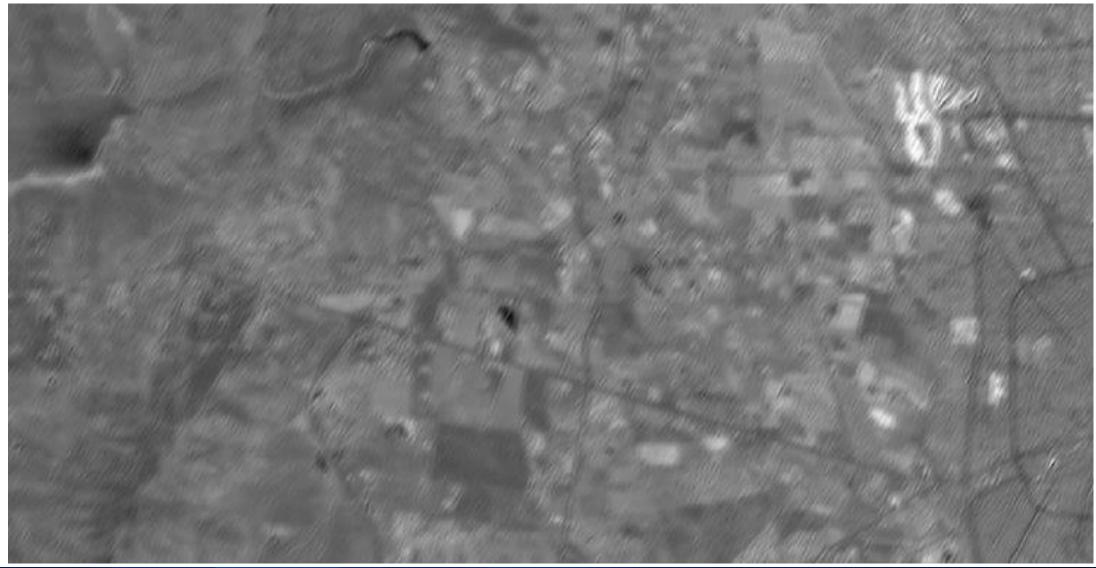


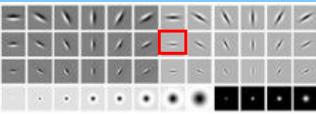


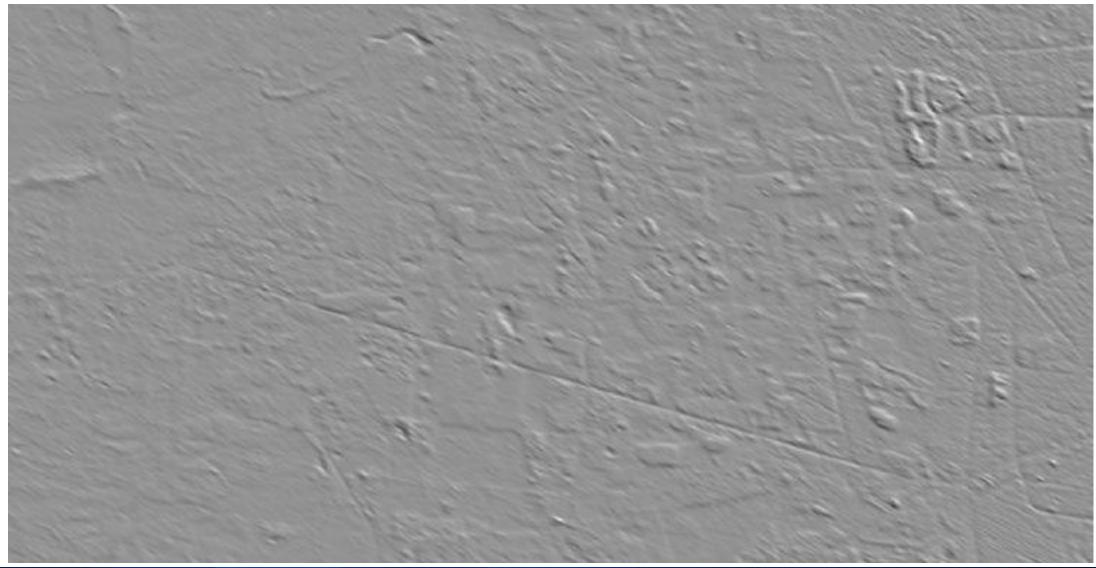


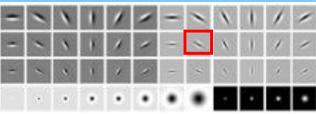


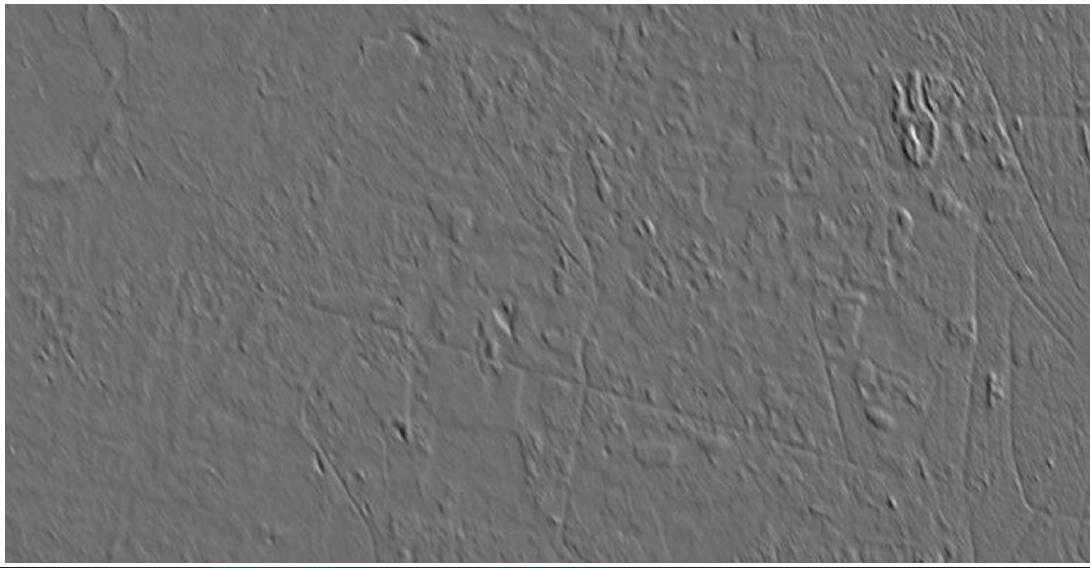


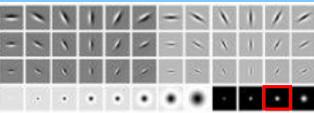


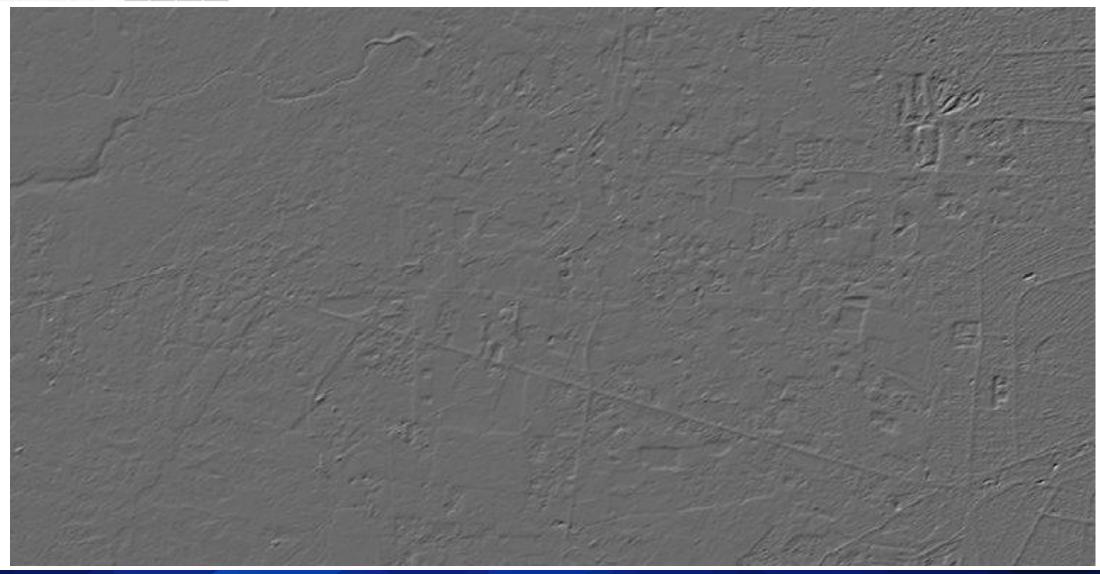




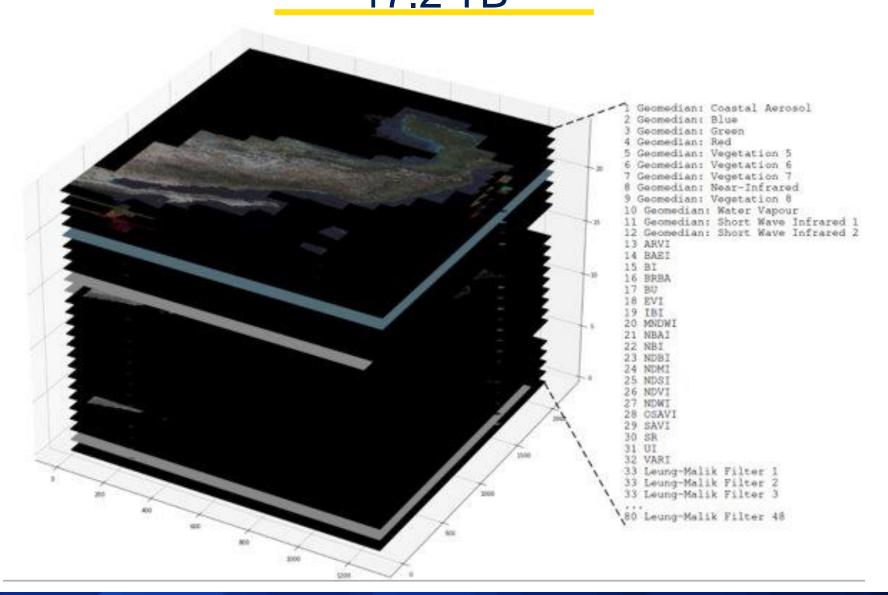








80 Raster Layers 17.2 TB



Geomedian Segmentation

Geomedian Segmentation



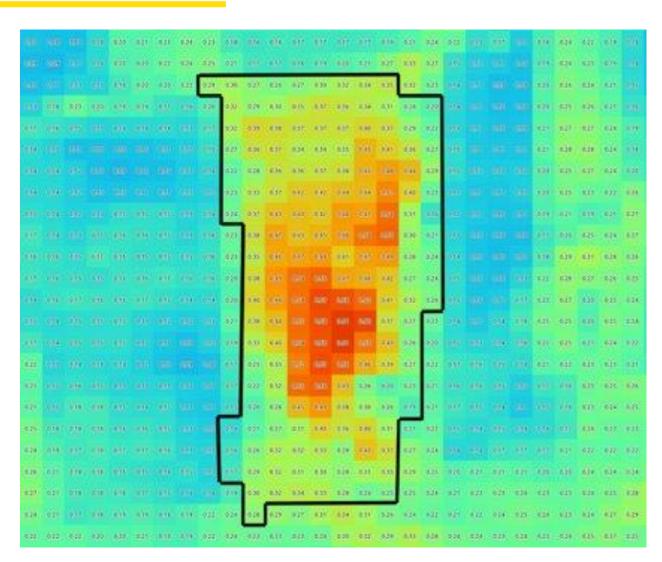
Segment characterization

ALL LAYERS

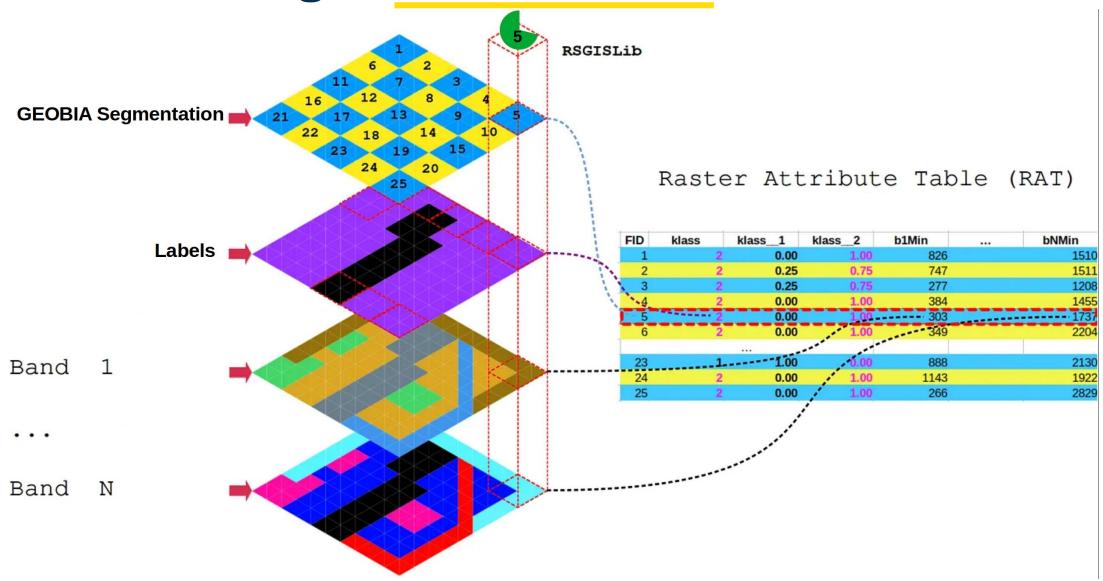
- Minimum
- Maximum
- Average
- Sum
- Standard Deviation

TEXTURE FILTERS

• Percentile 10 - 90



Segment characterization

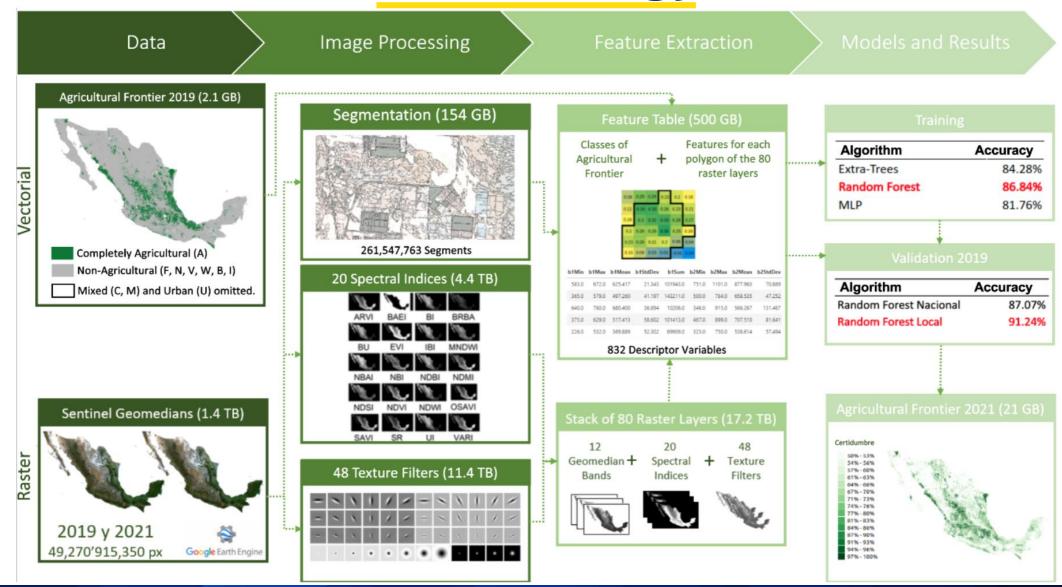


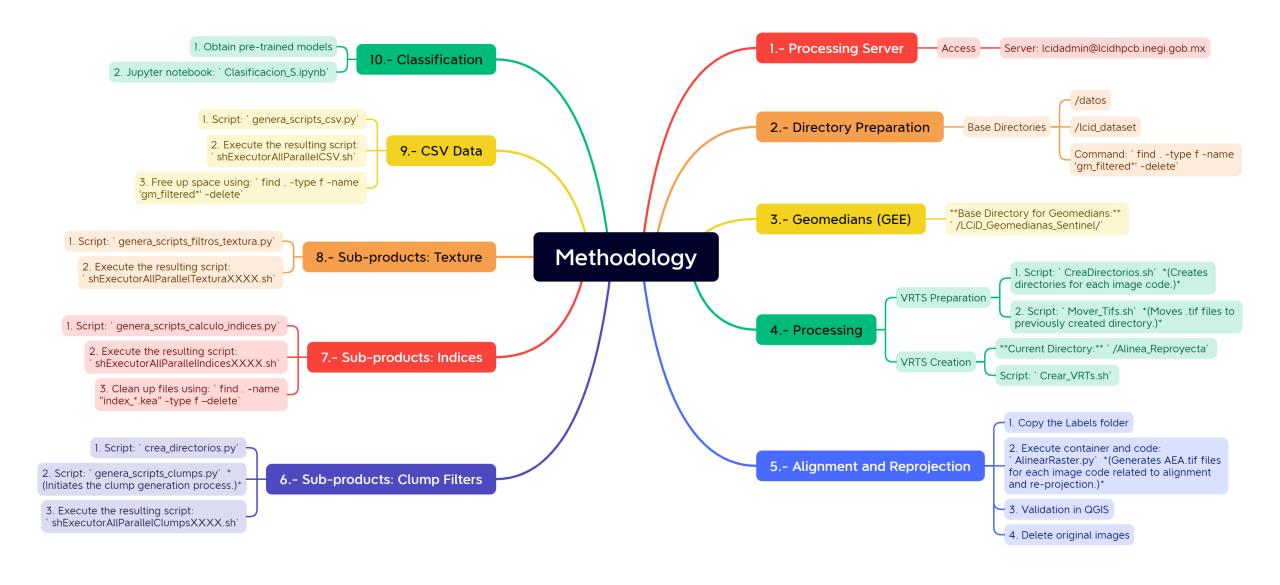
Segment characterization

Segment	Class	Geomedian- Blue-Minimum	Geomedian- Blue- Maximum	Geomedian-Blue- Mean	Geomedian- Blue-Sum	 Filter 48 Percentile 80	Filter 48 Percentile 90
1	2	256	3235	1570	15023	 0.26	0.074
261,547,763	1	129	2500	1120	12000	 0.39	0.19

Data table with 834 columns = Segment + Class + 832 Variables

Methodology





Results

Results

Landsat

Sentinel-2

AMCA 2016				AMCA-2016	First Iteration	Second Iteration	Third Iteration	Fourth Iteration	First Iteration Sentinel (2019)	First Iteration Sentinel (2021)
COD ACT	DESCRIPTION	Hectares								1 W 25
A	Completely agricultural	20,025,775.21	AGRICULTURAL	31,376,931	55,797,681	43,915,831	40,326,623	38,806,173	32,457,571	33,241,915
C	At least 30% agricultural	10,978,329.61								
М	Mixed	372,826.08								
F	Formerly agricultural	500,708.84		160,636,548	139,432,164	151,314,013	154,903,222	156,423,671	162,772,274	161,987,929
N	No agricultural activity	11,766,281.74								
U	Urban	434,263.75								
٧	Verified (no agricultural activity)	147,123,209.70	NOT AGRICULTURAL							
W	Body of water	809,801.94								
В	Roads	1,649.32								
1	Flood zones	632.80								
	Accuracy	1-20-000-260			79%	80%	82%	83%	91%	(*)

Results

50% - 55%

55% - 60%

60% - 65%

65% - 70%

70% - 75%

75% - 80%

80% - 85%

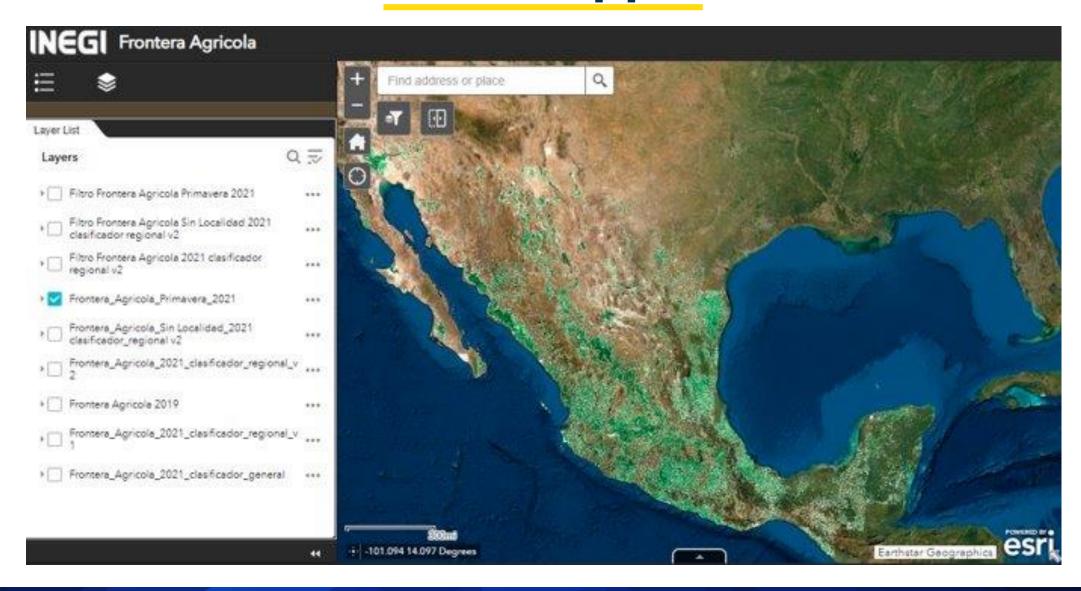
85% - 90%

90% - 95%

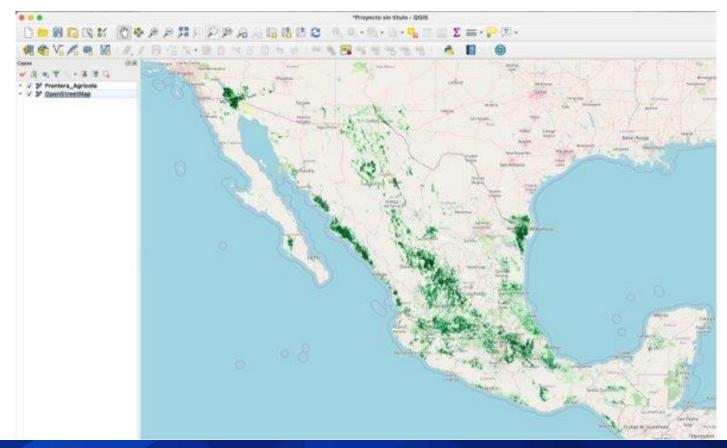
95% - 100%

Classifier certainty measure	Hectares
0.50	39,174,530
0.55	33,241,915
0.60	28,185,354
0.65	23,832,196
0.70	20,105,247
0.75	16,745,200
0.80	13,752,280
0.85	10,979,343
0.90	8,229,267
0.95	5,243,554
1.00	1,181,944

Web App



WMTS



Next Steps

- Process a new run with images corresponding to the census period, from October 2021 to September 2022.
- Compare the result of the new run with the results of the Census.
- Identify areas with good and poor algorithm performance
- Algorithm refinement from review results

Conclusions

Conclusions

Open Data

Big Data

Successful Collaboration

Replicable Methodology

Relevant Results

Scan me!

https://ecastats.uneca.org/regionalhub/

Thank you!

Conociendo México

800 111 46 34 www.inegi.org.mx atencion.usuarios@inegi.org.mx

f 🔟 💆 🗅 INEGIInforma

eduardo.vazquez@inegi.org.mx